585 research outputs found

    Recent achievements in ab initio modelling of liquid water

    Full text link
    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.Comment: 23 pages, 17 figure

    Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water

    Full text link
    Interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the conventional symmetric nearly-tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen bond network in water. Here, we present new insights into the nature of local interactions in water obtained using a novel energy decomposition method. Our simulations reveal that while a water molecule forms, on average, two strong donor and two strong acceptor bonds, there is a significant asymmetry in the energy of these contacts. We demonstrate that this asymmetry is a result of small instantaneous distortions of hydrogen bonds, which appear as fluctuations on a timescale of hundreds of femtoseconds around the average symmetric structure. Furthermore, we show that the distinct features of the X-ray absorption spectra originate from molecules with high instantaneous asymmetry. Our findings have important implications as they help reconcile the symmetric and asymmetric views on the structure of water.Comment: Accepted by Nature Commu

    A hybrid approach to Fermi operator expansion

    Full text link
    In a recent paper we have suggested that the finite temperature density matrix can be computed efficiently by a combination of polynomial expansion and iterative inversion techniques. We present here significant improvements over this scheme. The original complex-valued formalism is turned into a purely real one. In addition, we use Chebyshev polynomials expansion and fast summation techniques. This drastically reduces the scaling of the algorithm with the width of the Hamiltonian spectrum, which is now of the order of the cubic root of such parameter. This makes our method very competitive for applications to ab-initio simulations, when high energy resolution is required.Comment: preprint of ICCMSE08 proceeding
    • …
    corecore